Page 1 of 2

BALDOCK The Barn, 35 Whitehorse St Baldock, Herts SG7 6QF Tel: 07714 245566 Email: lbritton@silvion.co.uk Web: www.silvion.co.uk GRANTHAM The Brambles, Grantham Rd Old Somerby, Grantham Lincs, NG33 4AB Tel: 07872 857310 Email: rbritton@silvion.co.uk Web: www.silvion.co.uk

TYPE WE50 Ag/AgCI 0.5M KCI EMBEDDABLE REFERENCE ELECTRODE FOR USE IN CONCRETE

The silver/silver chloride (Ag/AgCl) elements in all Silvion electrodes are manufactured using a "unique" and advanced technique that results in a porous silver matrix. The matrix is then coated with precise quantities of silver chloride to ensure:

HIGH RELIABILITY; HIGH STABILITY; GREATER ACCURACY; INCREASED LIFE PERFORMANCE.

NOTE:

For our embeddable electrodes we ensure that the pre determined chloride ion concentration around the element is maintained at a constant value by using an inert electrolyte compatible with the Ag/AgCl chloride element. lonic continuity to the environment is via a micro-porous sintered disc. The WE50 body has been designed as two separate housings which couple together via male and female threads. The WE50 is supplied with the Ag/AgCl element section of the body completely sealed leaving the silver wire protruding so the client may supply and connect their own cable tail, if required. Electrodes can be supplied with a compression gland to accept up to a single core 6mm² double insulated cable.

BALDOCK The Barn, 35 Whitehorse St Baldock, Herts SG7 6QF Tel: 07714 245566 Email: Ibritton@silvion.co.uk Web: www.silvion.co.uk GRANTHAM The Brambles, Grantham Rd Old Somerby, Grantham Lincs, NG33 4AB Tel: 07872 857310 Email: rbritton@silvion.co.uk Web: www.silvion.co.uk

OUTER CASING

MATERIALS DIMENSIONS CERAMIC DISC DIAMETER WEIGHT (W/O CABLE)	Acetal body with porous ceramic sintered disc and nylon cable gland Length: 82mm (104mm w/ gland); Diameter: 20mm 15mm 33g
SILVER CHLORIDE ELEMENT MATERIALS DIMENSIONS SURFACE AREA	Silver compounds are 99.90% pure Length: 20mm (+/- 2mm); Section: 6mm Geometric: 4cm²; Real: 200cm²
ELECTROLYTE	Inert electrolyte with 0.5 Molar KCI
PERFORMANCE DATA (See N.B. below for details) Vs STANDARD HYDROGEN ELECTRODE @25°C IUPAC* GUIDELINES IN 0.5M KCL SOLUTION Vs SCE @ 25°C HISTORIC DNV GUIDELINES IN 0.5M KCL SOLUTION Vs SCE @20°C. ACCURACY STABILITY (POTENTIAL DRIFT AT CONSTANT TEMP AND ENVIRONMENT) TEMP COEFFICIENT TEMP RANGE INTERNAL RESISTANCE THEORETICAL DESIGN LIFE	+9mV -5mV +/-5mV +/- 1mV (24 Hrs)@ 5µA load -0.65mV/°C -5 to 70°C Less than 500 Ohms

QA/QC

All our electrodes are fully tested, calibrated and supplied complete with a calibration certificate. They are individually identified with a unique serial number to ensure full traceability. All dimensions +/-1mm unless otherwise stated.

WARRANTY

Our reference electrodes are fully warranted against defects in materials and workmanship for six months from the date of receipt. We will replace/ refund any defect units within this period, but we require the unit(s) for examination to determine any fault.

N.B. Under no circumstances should the reference electrode be connected directly to the structure or the electrode will selfdischarge and cease to operate. The minimum input impedance for the voltmeter used to measure the structure to electrolyte potential should be 10 M0hm.

In published literature, potential values for common reference electrodes used in Corrosion are measured with respect to a Standard Hydrogen Electrode (SHE) at 25°C and are shown as a positive value. However, historical DNV guidelines have required Ag/AgCl electrodes to have a potential within the range of -5mV +/- 5mV against a Saturated Calomel Electrode (SCE) at ambient temperatures in seawater (or 3% (0.5M) to 3.5% (0.546M) NaCl or KCl solutions). The DNV guidelines had been based on the value measured when the SCE electrode is connected to the positive terminal of the voltmeter and the Ag/AgCl electrode connected to the negative terminal. Silvion Ltd quote reference electrode potential values in this data sheet using both the electrode connection arrangement originally adopted by DNV giving a negative potential measurement and currently used by *International Union of Pure and Applied Chemistry (IUPAC) which gives a positive potential measurement. It should be noted that the polarity of the reference electrode connection affects the polarity of the potential measurement that is obtained, but not its magnitude.

The information provided in this document was accurate at the time it was published; however, we reserve the right to revise this document without prior warning.